Create deep technical newsletters explaining the tyingshoelaces agentic mesh architecture with Rust code walkthroughs and architecture diagrams. Build a technical audience by documenting production agentic systems.

Prerequisites

Load the Session Playbook first. Verify your session and profile before starting.

IMPORTANT: NEVER start, stop, or restart services. The API is already running.


CRITICAL: Context Management

New content = New context. ALWAYS. See the Contexts Playbook for full context management commands.

WRONG: Reusing substack-general context for multiple issues RIGHT: substack-extension-traits, substack-mcp-architecture, substack-job-scheduling (one context per issue)


CRITICAL: One Step = One Message

Step Action Separate Message?
Step 3 Plan YES
Step 4 Research YES
Step 5 Create YES
Step 6 Image YES

Step 1: Create a FRESH Context

// MCP: systemprompt_cli
{ "command": "core contexts new --name \"substack-[topic-slug]\"" }

Step 2: Review Performance

// MCP: systemprompt_cli
{ "command": "analytics content stats --since 30d" }

Step 3: Plan the Newsletter Issue

Focus on a specific component of the agentic mesh architecture.

Step 4: Research

// MCP: systemprompt_cli
{ "command": "admin agents message substack -m \"Research this architecture component.\" --context-id \"$CONTEXT_ID\" --blocking --timeout 120" }

Step 5: Create Content

// MCP: systemprompt_cli
{ "command": "admin agents message substack -m \"Create the newsletter with Rust code walkthroughs.\" --context-id \"$CONTEXT_ID\" --blocking --timeout 300" }

Step 6: Generate Diagrams

// MCP: systemprompt_cli
{ "command": "admin agents message substack -m \"Generate architecture diagrams.\" --context-id \"$CONTEXT_ID\" --blocking --timeout 60" }

Step 7: Publish and Verify

// MCP: systemprompt_cli
{ "command": "infra jobs run blog_image_optimization" }
{ "command": "infra jobs run publish_content" }
{ "command": "cloud sync local content --direction to-disk --source substack -y" }

Step 8: Update AI Provenance (MANDATORY AFTER CRUD)

CRITICAL: After ANY content CRUD operation (Create, Read, Update, Delete), agents MUST update the AI Provenance metadata.

AI Provenance is rendered in the content template as a transparency block showing readers how the content was created.

8.1 Update Provenance via CLI

// MCP: systemprompt_cli - Set provenance fields
{ "command": "core content edit [slug] --source substack --set agent=substack --set agent_summary=\"Created newsletter: [Title] - [Why]\" --set category=\"Architecture Deep Dive\"" }

Verify provenance is set:

// MCP: systemprompt_cli
{ "command": "core content show [slug] --source substack" }

8.2 Agent Summary Guidelines

The agent_summary is displayed as "Why This Was Created". It should:

  • Be concise (1-2 sentences)
  • Explain the PURPOSE, not just the action
  • Include the content title
  • Reference the architecture component if relevant

GOOD: "Created newsletter: Extension Traits Deep Dive - explaining the trait system for building custom extensions." BAD: "Created newsletter" (too vague)

Provenance is NOT optional. All AI-generated content MUST have complete provenance metadata.


Content Types

Type Length Use Case
substack_newsletter 2,000-3,500 words Technical deep dives

Format Requirements

  • Rust code examples with annotations
  • Architecture diagrams
  • Production context and lessons
  • British English

Troubleshooting

Issue Solution
Content not created Verify with core content search
Agent says "created" but doesn't exist Create a NEW context